Double-dimers, the Ising model and the hexahedron recurrence

نویسندگان

  • Richard W. Kenyon
  • Robin Pemantle
چکیده

We define and study a recurrence relation in Z, called the hexahedron recurrence, which is similar to the octahedron recurrence (Hirota bilinear difference equation) and cube recurrence (Miwa equation). Like these examples, solutions to the hexahedron recurrence are partition functions for configurations on a certain graph, and have a natural interpretation in terms of cluster algebras. We give an explicit correspondence between monomials in the Laurent expansions arising in the recurrence with certain double-dimer configurations of a graph. We compute limit shapes for the corresponding double-dimer configurations. The Kashaev difference equation arising in the Ising model star-triangle relation is a special case of the hexahedron recurrence. In particular this reveals the cluster nature underlying the Ising model. The above relation allows us to prove a Laurent phenomenon for the Kashaev difference equation. Resumé. Nous définissons une relation sur Z appellée “hexahedron recurrence”, qui est un cousin des relations bilinéaires “octaédrale” et “cubique”. Comme ces exemples, ses solutions peuvent être décrits comme fonctions de partition pour certaines configurations d’arêtes sur un graphe planaire, et ont une interprétation naturelle en termes de clusters. Nous trouvons une correspondance explicite entre le termes dans les développements de Laurent dans ce récurrences et certains double-recouvrements par dimères du graphe sous-jacent. On calcule les formes limites. L’équation de Kashaev paraissant dans l’opération triangle-étoile du modèle d’Ising est un cas spéciale de notre récurrence. Ce fait révèle la nature “cluster” du modèle d’Ising, et nous permette de montrer la propriété de Laurent pour l’équation de Kashaev.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice

Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization,  internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.

متن کامل

Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice

In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4),  ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...

متن کامل

High order perturbation study of the frustrated quantum Ising chain

In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...

متن کامل

بسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهم‌کنش نزدیکترین همسایه‌ها

 The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...

متن کامل

DFT Application to the Analysis of Quadrupole Coupling Constant of Aluminum Methyl Chloride Dimers

The analysis of the 27Al and 35Cl quadrupole coupling parameters of aluminum methyl chloride dimers were carried out on the basis of the density functional theory (DFT). The available experimental values of quarupole coupling constants were compared with their calculated ones. In this investigation, the correlations were made between calculated 27Al and 35Cl nuclear quadrupole coupling constant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2016